If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2=9u
We move all terms to the left:
4u^2-(9u)=0
a = 4; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·4·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*4}=\frac{0}{8} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*4}=\frac{18}{8} =2+1/4 $
| 5x+17=8x+7= | | -9−6b=-7b | | 4y÷4=5y-4 | | p/6-189=-188 | | |2x|-4=14 | | -8x+(x)=40 | | 2(s+9)=20 | | 1-0.99^x=0.25 | | g/2-8=-7 | | 1-0.99^x=0.75 | | 19+17=x+17 | | 4u2=9u | | k/4+12=-1 | | 165+5x=180 | | 8p=3p+10 | | 4x+56=156 | | -8x+()=40 | | -6z=-3z+9 | | 44=8+9x | | -14q+18=10q-6 | | 99=77-s | | -4.9x^2+3.5x+10=-9 | | -4.9x^2+3.5x+10=9 | | q/42-1=1 | | .3x=4/15 | | 2(y-7)-10=12-4y | | y+5−y+4= | | 27x=180 | | u/9+6=7 | | 8k=-13k | | 2.6=h-41.5 | | 3^4x=72 |